Label-free detection of melittin binding to a membrane using electrochemical-localized surface plasmon resonance.
نویسندگان
چکیده
Localized surface plasmon resonance (LSPR) and electrochemistry measurements connecting to core-shell structure nanoparticle are successfully exploited in a simultaneous detectable scheme. In this work, the surface plasmon band characterizations of this nanostructure type are initially examined by controlling the core size of the silica nanoparticle and shell thickness of the deposited gold. These results clearly show that when the shell thickness is increased, keeping the core size constant, the peak wavelength of the LSPR spectra is shifted to a shorter wavelength and the maximum of peak intensity is achieved at a particular shell thickness. On the basis of this structure, we present a membrane-based nanosensor for optically detecting the binding of peptide toxin melittin to hybrid bilayer membrane (HBM) and electrochemically assessing its membrane-disturbing properties as a function of concentrations. It will open up the way to detect functionally similar protein toxins and other membrane-targeting peptides with the intension of integrating this chip into a microfluid and expanding it into multiarray format.
منابع مشابه
Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd
Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...
متن کاملAntibody Conjugated Gold Nanoparticles for Detection of Small Amounts of Antigen Based on Surface Plasmon Resonance (SPR) Spectra
In this paper, a fast and sensitive localized surface plasmon resonance (LSPR) based biosensor was developed and the optimization of gold – antibody conjugates through investigation of different parameters were performed. Gold nanoparticles (AuNPs) with a size of ~20 nm were synthesized via chemical reduction of HAuCl4 with trisodium citrate as reducing and stabilizing agent. The impacts of pH ...
متن کاملTunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملIntegration of Faradaic electrochemical impedance spectroscopy into a scalable surface plasmon biosensor for in tandem detection.
We present an integrated label-free biosensor based on surface plasmon resonance (SPR) and Faradaic electrochemical impedance spectroscopy (f-EIS) sensing modalities, for the simultaneous detection of biological analytes. Analyte detection is based on the angular spectroscopy of surface plasmon resonance and the extraction of charge transfer resistance values from reduction-oxidation reactions ...
متن کاملLabel-Free Electrochemical Diagnosis of Viral Antigens with Genetically Engineered Fusion Protein
We have developed a simple electrochemical biosensing strategy for the label-free diagnosis of hepatitis B virus (HBV) on a gold electrode surface. Gold-binding polypeptide (GBP) fused with single-chain antibody (ScFv) against HBV surface antigen (HBsAg), in forms of genetically engineered protein, was utilized. This GBP-ScFv fusion protein can directly bind onto the gold substrate with the str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 80 6 شماره
صفحات -
تاریخ انتشار 2008